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bstract

The goal was to elucidate the time course of regional brain atrophy rates relative to age in cognitively normal (CN) aging, mild cognitively
mpairment (MCI), and Alzheimer’s disease (AD), without a priori models for atrophy progression. Regional brain volumes from 147
ognitively normal subjects, 164 stable MCI, 93 MCI-to-AD converters and 111 AD patients, between 51 and 91 years old and who had
epeated 1.5 T magnetic resonance imaging (MRI) scans over 30 months, were analyzed. Relations between regional brain volume change
nd age were determined using generalized additive models, an established nonparametric concept for approximating nonlinear relations.
rain atrophy rates varied nonlinearly with age, predominantly in regions of the temporal lobe. Moreover, the atrophy rates of some regions

eveled off with increasing age in control and stable MCI subjects whereas those rates progressed further in MCI-to-AD converters and AD
atients. The approach has potential uses for early detection of AD and differentiation between stable and progressing MCI.

2010 Elsevier Inc. All rights reserved.
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. Introduction

Alzheimer’s disease (AD) is associated with higher rates
f brain tissue loss than normal aging, as demonstrated
y longitudinal studies with magnetic resonance imaging
MRI) (Frisoni et al., 2010). Higher rates of brain tissue loss

* Corresponding author at: 4150 Clement St. 114M, San Francisco, CA
4121, USA. Tel.: �1 415 221 4810 � 4904.

E-mail address: norbert.schuff@ucsf.edu (N. Schuff).
1 Data used in the preparation of this article were obtained from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.lo-
i.ucla.edu/ADNI). As such, the investigators within the ADNI contributed
o the design and implementation of ADNI and/or provided data but did not
articipate in analysis or writing of this report. ADNI investigators include
complete listing available at www.loni.ucla.edu/ADNI/Collaboration/
rDNI_Manuscript_Citations.pdf).

197-4580/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.neurobiolaging.2010.07.012
re also seen in mild cognitive impairment (MCI), a clinical
oncept to characterize subjects who lie cognitively be-
ween dementia and normal aging and who have an in-
reased risk for AD (Petersen et al., 2009). MRI studies
urther showed that the regional distribution of high brain
issue loss in AD and MCI patients exhibits a characteristic
attern that involves predominantly regions in the medial
emporal lobe, including the entorhinal cortex (ERC) and
ippocampus, mirroring the known distribution of plaques,
angles, and neurodegeneration, the hallmarks of AD (Braak
nd Braak, 1996; Leow et al., 2009; Morra et al., 2009).
RI measurements of increased rates of brain tissue loss

ave therefore been proposed as a potential imaging marker
f AD. However, critical issues about the time course of

egional tissue loss relative to age remain.

mailto:norbert.schuff@ucsf.edu
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf
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Although many MRI studies have provided an incredible
mount of information about rates of brain tissue loss in nor-
al aging, MCI, and AD, a fundamental limitation has been

he difficulty in deriving the time course of brain atrophy over
he adult age range. This information is essential to determine,
or example, whether some areas in the brain lose tissue earlier
han others and how compounding losses relate to cognitive
ecline. Variations in brain atrophy rates over the adult age
ange could also be the reason behind some startling observa-
ions in sporadic AD that some patients with late onset of
linical symptoms progress more slowly than those with earlier
nsets (Wilson et al., 2000). Several longitudinal MRI studies
ttempted to elucidate the time course of brain atrophy by
esting whether rates of tissue loss accelerate (Davatzikos et al.,
009; Driscoll et al., 2009; Jack et al., 2008b; McDonald et al.,
009; Schuff et al., 2009). Other studies derived information of
rain atrophy from cross-sectional observations, which are
nherently limited by distinguishing between secular and age-
elated changes (Raz et al., 2004). The approaches all have
sed a priori models for the time course of brain atrophy to
xtract information. However, to find an a priori reason for
sing a particular model is difficult and therefore, the time
ourse of brain atrophy relative to age remains elusive, espe-
ially across the cognitive spectrum.

In this study, we abolished modeling explicitly the time
ourse of brain atrophy and aimed at achieving a more data
riven approach, while simultaneously controlling effectively
or variations across subjects at different ages and cognitive
onditions. To accomplish this goal, we employed generalized
dditive models (GAM) (Hastie and Tibshirani, 1986), an
xtension of the better known generalized linear models used
n statistical parametric mapping (Ashburner and Friston,
000) and an established approximation of nonlinear functions.
ecause the flexibility of GAM allows combining parametric
odel components, i.e., brain volume changes between MRI

can intervals, and nonparametric components, i.e., brain vol-
me variations across the age range of the subjects, the method
s particularly suited for the purpose of this study. Specifically,
e tested first whether brain atrophy rates vary nonlinearly
ith age across the cognitive spectrum, i.e., in normal aging,
CI, and AD, and second, whether the time course of brain

trophy with age is regionally dependent such that regions
nown to be impacted early in AD, i.e., the hippocampus, will
xhibit higher rates earlier than regions affected later by AD. In
ddition, we explored — based on the estimated rates — which
rain regions in MCI and AD provide hypothetically the best
ifferentiation between young patients and controls, i.e., those
ot older than 65 years.

. Methods

.1. Subjects

The participants in this study were recruited between
005 and 2008 through the Alzheimer’s Disease Neuroim-

ging Initiative (ADNI), a longitudinal study of about 800 r
ndividuals from 56 centers in the US and Canada, designed
o identify biomarkers of early AD for clinical trials (Muel-
er et al., 2005a, 2005b). Further details of the ADNI study
esign as well as inclusion and exclusion criteria of subjects
an be found at www.adni-info.org. Written consent was
btained from all subjects participating in the study, and the
tudy was approved by the institutional review board at each
articipating site.

At the time of this investigation, regional brain volumes
ere available from 155 cognitively normal subjects, 266

ubjects diagnosed with MCI, and 115 patients diagnosed
ith AD, who all completed at least 2 and up to 5 longitu-
inal MRI scans at 1.5 Tesla as well as a battery of clinical
nd cognitive assessments parallel to MRI over a period of
.5 years. We further divided the MCI group into those who
onverted to AD at a later visit (cMCI, n � 93) and those
ho remained stable (sMCI, n � 164). We also ensured that

he control group included stable subjects only and excluded
controls, who either converted to MCI or had a change in

he Clinical Dementia Rating (CDR) score from 0 to 0.5.
his converter group was too small for any further mean-

ngful analysis. We also excluded 13 subjects whose diag-
osis was reversed during the course of the study (either
rom MCI to controls [n � 9] or from AD to MCI [n � 4])
ecause of the uncertainty about these subjects’ cognitive
tatus. The final size of each group is summarized in Table
, together with other demographic data at baseline. The
ubjects were between 56 and 91 years old. Each subject’s
ognitive evaluation included: (1) the Mini Mental State
xamination (MMSE) (Folstein et al., 1975) to provide a
lobal measure of mental status; (2) and the Alzheimer’s
isease Assessment Scale-Cognitive Subscale (ADAS-Cog)
Mohs et al., 1997), which is the most used cognitive as-
essment battery in clinical dementia trials. The participants
ere also examined for depression using the Geriatric De-
ression Scale (GDS) questionnaire (Yesavage et al., 1982),
n which subjects are asked to respond to 30 items with yes
r no in reference to how they felt over the past week. In
ddition, the genetic profile of the apolipoprotein E (APOE)
ene of each subject was determined. More details about the
ests can be found on the ADNI web site, www.loni.ucla.
du/ADNI. A summary of the demographic and clinical data
re provided in Table 1, separately for each group. Finally,
o exclude the possibility of selection bias, we compared
ge, ADAS-Cog score and ApoE profile of the subjects in
his study with those from all subjects enrolled in ADNI but
ound no significant differences (p � 0.3).

.2. MRI acquisition and brain volumetry

The subjects underwent at each site the standardized 1.5
MRI protocol of ADNI (see www.loni.ucla.edu/ADNI/

esearch/Cores/index.shtml), which included T1-weighted
RI based on a sagittal volumetric magnetization prepared
apid gradient echo (MP-RAGE) sequence with an echo

http://www.adni-info.org
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
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ime of 4 ms, a repetition time of 9 ms, a flip angle of 8°, and
cquisition matrix size of 256 � 256 � 166, yielding a
ominal resolution of 0.94 � 0.94 � 1.2 mm per voxel.
mage quality and preprocessing was performed at a desig-
ated MRI Center, as described in Jack et al. (2008a). The
aw Digital Imaging and Communications in Medicine
DICOM) MRI data for this study were downloaded from
he Laboratory of Neuro Imaging (LONI) Image Database
rchive (www.loni.ucla.edu/ADNI/Data/index.shtml). The

mages were intensity-normalized, aligned to a brain atlas,
kull-stripped, and segmented into 70 regional volumes
sing the freely available FreeSurfer software package, ver-
ion 4.4 (surfer.nmr.mgh.harvard.edu/). In version 4.4 of
reeSurfer, the confounding effect of intrasubject morpho-

ogical variability was reduced by using a longitudinal
orkflow that estimated brain morphometry measurements
nbiased with respect to any time point in each subjects’
ongitudinal MRI data. Specifically, instead of using data
btained at a specific time point (e.g., baseline MRI) as a
rior for the longitudinal morphometric deformations, a
emplate image volume from all time points was created
rst as an unbiased prior before the morphometric defor-
ations were computed for data at all time points. For a

ull description of the FreeSurfer processing steps, see
Fischl et al., 2002, 2004), and for a full description of the
ongitudinal workflow, see surfer.nmr.mgh.harvard.edu/
swiki/LongitudinalProcessing. The outcome measures of
he Freesurfer workflow were segmented maps with ana-
omical labels of 70 brain regions, yielding the volume of
ach region for each time point and each subject (in all, 40
egions are reported after averaging those regions which
howed strong correlations between the left and right hemi-
phere). The segmented maps were visually rated for accu-
acy by experienced staff and excluded from the analysis if

able 1
emographic and clinical data summary

ariable Control stable MCI stable

umber of subjects 147 164
emale % 50 38
POE-�4 carriers % 22 45
aseline
Age (years) 76 � 5 [61–91] 75 � 7 [5
MMSEb 29 � 1 [25–30] 27 � 3 [2
ADAS-cogc 6 � 3 [0–14] 11 � 6 [2
GDSd 1.0 � 1.3 [0–5] 1.9 � 1.4 [

hange from baselinee

MMSE 0 � 0.8 �0.4 � 1.4
ADAS-cog 0 � 2.1 �5.7 � 2.8
GDS �13.1 � 0.9 �13.4 � 1.1

alues are in mean � standard deviation; Ranges are listed in square bra
ey: AD, Alzheimer’s disease; MCI, mild cognitive impairment.
a Using Fisher exact test; all other tests using analysis of variance (AN
b Mini Mental State Examination; maximal range 0 to 30 points.
c Alzheimer’s disease Assessment Scale-Cognitive Subscale; maximal r
d Geriatric Depression Scale; maximal range 0 to 15 points.
e Change is expressed as annualized percent change from baseline.
uality criteria were not met. e
.3. Generalized additive models (GAM)

Here, we briefly describe the application of GAM for the
rediction of brain atrophy rates. GAM were proposed in 1986
y Hastie and Tibshirani (Hastie and Tibshirani, 1990) as an
ffective method to tackle the problem of rapidly increasing
ariance of estimates when there is a large number of variables
o model. GAM assume that the expected value of the depen-
ent variable is related to the predictor variables through a
mooth (but not necessary linear) link function and further-
ore that the probability distribution of the dependent variable

s described by the family of exponential functions. Applying
AM for this study, we sought to relate changes in brain
olume Vij of each subject i across MRI scans j to the age
istribution of the subjects m(agei). The age distribution can
nduce variations in both magnitude �m(age) and time
(�iage), where m is of unknown shape. The volume

hanges can then be modeled according to:

Vij(age) � �0 � �1tij � m(�i � �iage) (1)

he first 2 terms on the right hand side of Equation (1)
epresent the conventional parametric model for brain vol-
me at baseline and linear volume change over time, re-
pectively. The third term represents the unknown age-
ependent shape of volume change in amplitude and time.
he goal is to estimate the age-dependence of volume
hange, i.e., E(Vij | age) without explicitly knowing the
hape of m. Utilizing the concept of GAM, we approximate

by smooth basis functions with coefficients S�i for mag-
itude and T�i for time, which leads to:

E(Vij � age) � �0 � �1tij � g(S�im(T�i
age)) (2)

ere, g(●) is a smooth link function, relating the unknown
hape of m to the volumes and E(Vij | age) stands for the

MCI converter AD p-value

93 111
38 46 0.1a

68 60 �0.001a

74 � 7 [56–88] 75 � 8 [56–90] 0.2
25 � 3 [18–30] 21 � 4 [5–27] �0.001
15 � 6 [4–35] 22 � 9 [6–50] �0.001
2.1 � 1.8 [0–9] 1.9 � 1.8 [0–6] �0.001

�7.0 � 1.8 �10.5 � 2.6 �0.001
�20.3 � 3.6 �25.2 � 5.1 �0.001
�8.5 � 1.1 �8.0 � 1.3 0.2

-values indicate effects across the groups.

to 70 points.
6–90]
1–30]
–25]
0–11]

ckets; p

OVA).

ange 0
xpected age-dependent values of Vij. We used the GAM

http://www.loni.ucla.edu/ADNI/Data/index.shtml
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing
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ibrary in R (www.r-project.org/; Wood, 2004) for fitting.
or smoothing, we used thin plate spline basis functions,
hich do not require selecting explicitly knot positions, and
e controlled smoothness by a second derivative penalty

unction (Wood, 2004). To obtain the optimal smoothing
arameters and avoid overfitting, we used numerical itera-
ions of penalized least squares toward minimizing the
eneralized cross-validation score, an index for optimal
moothness (Woods, 2006). This procedure is implicitly
mbedded in the GAM library in R for automatic smoothing
arameter estimations (stat.ethz.ch/R-manual/R-patched/
ibrary/mgcv/html/00Index.html). To reassure an optimum
election of smoothing parameters, we also performed the
umerical iterations with maximum likelihood estimations.
n the few cases where iterative least squares and maximum
ikelihood tests yielded discordant results, we selected the
moothing terms manually until we found the minimum
eneralized cross-validation score. Finally, to further reduce
he risk of overfitting, we forced the effective degree of
reedom in the model to count as 1.4 degrees of freedom,
hich is an ad-hoc approach against overfitting (Kim and
u, 2004). We augmented the model by parametric func-

ions to account for covariates, such as head size, gender,
nd each subject’s genetic APOE profile.

.4. Statistics

Changes in regional brain volumes as a function of age
ere fitted separately for each diagnostic group and for 40

egional brain volumes (and cerebrospinal fluid [CSF]
paces) defined with Freesurfer (A total of 70 brain regions
ere evaluated initially but regions showing strong corre-

ations between the left and right hemisphere were aver-
ged, resulting ultimately in 40 regional tests). To test the
ignificance of nonlinearity between volume and age rela-
ions, we compared the fits from GAM with fits derived
sing a nonpenalized generalized linear model (GLM), in
hich age was included as a linear variable while all other
ariables in GAM and GLM were the same. An F-statistic
as used to determine if differences between the fits are

ignificant and the Akaike information criterion was used to
etermine which fit was better. The p-values of such com-
arisons, however, are not exact and can be biased because
he tests are based on pretending that a penalized fit is
quivalent to an unpenalized fit with the same effective
egrees of freedom and neglect the uncertainty associated
ith smoothing parameter estimations. To determine the
otential statistical bias in such comparisons, we evaluated
he procedure using simulated linear and nonlinear data with

range of noise levels and found a slight bias toward
onlinearity of p � 0.01 (finding nonlinearity in simulated
ata when there was none). We therefore adjusted the sig-
ificance threshold in tests of nonlinearity to an alpha level
f less than 0.01. Lastly, we estimated — based on the
AM results of age-dependent brain atrophy — which brain
egions provide hypothetically the best effect size to differ- i
ntiate between young MCI and AD patients, who are pre-
umably in an early disease stage, and controls. This was
ccomplished by comparing estimates of brain tissue loss
ased on GAM across the groups using 1000-fold bootstrap of
he GAM residuals and by computing effect sizes, expressed as
ohen’s d. All statistics was performed with R (www.r-
roject.org/). p-values are adjusted conservatively for multiple
omparisons of brain regions using Bonferroni correction.

. Results

Table 1 lists demographic and clinical characteristics of
he subjects at baseline and follow-up. At baseline, the 4
roups did not differ significantly in age (p � 0.2, analysis
f variance [ANOVA]) and gender ratio (p � 0.1, Fisher
xact test) but — as expected — cMCI and AD patients
arried the APOE-�4 gene more frequently (p � 0.001) than
ontrol subjects and also scored worse on cognitive perfor-
ance (p � 0.001 for MMSE and ADAS-cog) as well as on

epression (p � 0.001). sMCI subjects had values that lay in
he middle between those of control and cMCI subjects.

ith respect to change from baseline, cMCI and AD pa-
ients declined cognitively much faster than the control and
MCI subjects, as expected (p � 0.001), whereas the groups
id not differ significantly in changes in depression over
ime (p � 0.2). Differences in age distributions across the
roups were also not significant (p � 0.09 by Kolmogorov-
mirnov tests), implying that variations in age sampling
hould not bias the analysis of age-dependent brain tissue
oss in favor of any group.

A representative example of the time course of brain
issue loss as a function of age is shown in Fig. 1 for the
ippocampus. In the top row are shown raw data of indi-
idual trajectories of hippocampal volume change as a func-
ion of age from 75% randomly selected subjects. In the
ottom row are shown the trajectories of estimated volume
hange from the same subjects after a GAM analysis, in-
luding parametric corrections for variations in intracranial
olume and ApoE4 status. The figure illustrates first that the
elationship between hippocampal volume loss and age is
enerally nonlinear and second that nonlinearity varies sub-
tantially across the groups.

Group mean brain volume changes as a function of age
re illustrated for global measures (e.g., lateral ventricle
LV] dilatation, white matter [WM], and cortical gray mat-
er [GM]) in Fig. 2, for temporal lobe regions in Fig. 3 and
or parietal/frontal lobe regions in Fig. 4, separately for each
roup and ranked by significance of nonlinearity. The mean
olume change of each brain region and each group is
eferenced to the overall mean volume of the corresponding
rain region in the control group, where positive values
ndicate a larger size and negative values indicate a smaller
ize than the reference volume. The mean volumes are
epresented as solid lines, the 95% confidence bands are

ndicated by shaded areas, and the age sampling is indicated

http://www.r-project.org/
http://stat.ethz.ch/R-manual/R-patched/library/mgcv/html/00Index.html
http://stat.ethz.ch/R-manual/R-patched/library/mgcv/html/00Index.html
http://www.r-project.org/
http://www.r-project.org/
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y rugs at the bottom of each plot. For each plot in Figs.
–4, the corresponding statistical test results of age depen-
ence and significance of nonlinearity in are summarized in
able 2. Fig. 2 illustrates that the well established ventric-
lar expansion with age, an indirect measure of global brain
trophy, levels off significantly at increasing age in normal

ig. 1. Individual trajectories of hippocampal volumes as a function of age
rom 385 (75%) randomly selected subjects of the study. Raw data are shown
n the top row and fitted data in the bottom row. The data are shown separately
or cognitive normal subjects, subjects with mild cognitive impairments who
emained stable (sMCI), and those who converted to Alzheimer’s disease
cMCI), and patients with a diagnosis of Alzheimer’s disease (AD).

ig. 2. Estimations of brain volume loss and ventricular dilation as a func
nd volume loss of white matter (WM) and cortical gray matter (GM), in o
olume loss, shaded areas indicate the 95% confidence bands, and rugs at
eferenced relative to the mean volume of the corresponding brain region in

ndicate a smaller size than the corresponding reference mean volume.
nd sMCI subjects (significance of nonlinearity pnonlinear �
.008) whereas the expansion continues in cMCI and AD
atients. The shape of ventricular expansion is mirrored in
ach group by atrophy of WM (pnonlinear � 0.009) and
ortical GM, though nonlinearity in GM changes was only
trend (pnonlinear � 0.011). A more regionally selective

nalysis of GM change revealed significant nonlinear
hanges with age primarily in the temporal lobe, as illus-
rated in Fig. 3. Specifically, the time course of GM atrophy
s leveling off with increasing age in the parahippocampal
yrus (PG, pnonlinear � 0.00004) and the hippocampus (HP,

nonlinear � 0.0005) and more prominently so in normal
ubjects than in sMCI, cMCI, and AD subjects, where GM
olume is markedly reduced already. In contrast to the
arahippocampal gyrus and hippocampus, the time course
f GM atrophy of the fusiform gyrus and transverse tem-
oral lobe accelerates with increasing age (FG: pnonlinear �
.0007; TT: pnonlinear � 0.002) and this is seen primarily in
ontrols while sMCI, cMCI, and AD subjects already have
educed GM volumes. The entorhinal cortex (ERC, pnonlinear �
.01) largely exhibits a linear time course of GM loss with
ge across all groups with a progressively increasing atro-
hy rate from controls to sMCI, cMCI, and AD patients.
M loss in parietal and frontal lobe regions progressed

argely linear with advanced age across the groups (all

nonlinear � 0.01), as illustrated in Fig. 4. Similarly, a linear
ime course of tissue loss was found in most other brain
egions, including subcortical structures (see supplementary
aterial for details).

age by diagnostic group. Shown are dilation of the lateral ventricles (LV)
significance of nonlinearity (see also Table 2). Solid lines represent mean
tom of each plot indicate the age sampling. Volume loss in each group is
trol group. Hence, positive values indicate a larger size and negative values
tion of
rder of
the bot
the con
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To address the issue of overfitting, which could mimic
onlinearity, we also fitted the data using nonpenalized
eneralized linear models (GLM) with a quadratic term for
ge to approximate nonlinear age dependence. In each case,
here GAM implied a significant nonlinear relationship
etween volume loss and age, GLM also yielded significant
esults for the quadratic term of age, suggesting that findings
f nonlinearity in some brain regions are not simply an
rtifact of overfitting.

Lastly, we determined — based on the GAM estimations —
hich brain regions provide hypothetically the best effect

ize to differentiate between young patients and controls,
.e., those no older than 65 years. The results are summa-
ized in Table 3, listing volume change as annualized per-

ig. 3. Estimations of brain volume loss as a function of age by diagnostic
yrus (PG), fusiform gyrus (FG), hippocampus (HP), transverse temporal
atter (ST), in order of the significance of nonlinearity (see Table 2). Th
entage change from baseline, separately for each group as w
ell as the corresponding effect sizes to separate sMCI,
MCI, and AD patients from control subjects. ERC atrophy
ates provided the best effect size to separate AD patients
rom control subjects early, followed by atrophy rates of the
ippocampus and ventricular expansion. Interestingly, the
ame measures and in the same order were also effective
effect size �1.0) to differentiate between young cMCI and
ontrol subjects. No measure differentiated between sMCI
nd control subjects at a young age.

. Discussion

We have 2 major findings: First, we demonstrated that
he time course of brain tissue loss can vary nonlinearly

or temporal lobe regions. Shown are volume loss of the parahippocampal
ray matter (TT), entorhinal cortex (EC), and superior temporal lobe gray
representations of volume loss are the same than those in Fig. 2.
group f
ith age, depending on the brain region and cognitive sta-



t
w
d
c
r
o
a
a
p
t
s
t
c
t

p
t

a
e
n
M
m
s
t
i
p
a

F
p
(
t
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us. While our results are consistent with other MRI studies,
e did not explicitly model the shape of change but let the
ata drive the results. Second, we found atrophy rates of
ertain brain regions (and similarly ventricular expansion
ates, which basically reflects global brain tissue loss) level
ff with increasing age and this is seen primarily in control
nd sMCI subjects whereas in cMCI and AD patients the
trophy rates (and equivalently ventricular expansion rates)
rogress further. A leveling off of brain atrophy is consis-
ent with the concept that age related neurodegeneration is
tatistically distributed such that the tissue dying first is
issue with low vitality. The time course in cMCI and AD is
onsistent with the idea that disease-related neurodegenera-

ig. 4. Estimations of brain volume loss as a function of age by diagno
osterior cingulate gray matter (PC), precentral gray matter (PR), later
MO), inferior parietal lobe gray matter (IP), and superior frontal lobe
hose in Fig. 2.
ion accumulates over years. In conclusion, the new ap- p
roach using GAM has uses for early detection of AD and
he differentiation between stable and progressing MCI.

Many MRI studies investigated the time course of brain
trophy relative to age (McDonald et al., 2009; Pfefferbaum
t al., 1994; Thompson et al., 2003) and several reported
onlinear variations (Driscoll et al., 2009; Jack et al., 2008b;
cDonald et al., 2009; Schuff et al., 2009). In contrast to
ost other studies, however, we did not model the relation-

hip between brain volume change and age a priori, and
herefore the findings of nonlinear relationships are more
nsightful. Investigations before were hampered by the com-
lexity of modeling progression of brain atrophy in AD and
ging as well as by the huge biological variability across

up for frontal and parietal lobe regions. Shown are volume loss of the
tofrontal lobe gray matter (LO), medial orbitofrontal lobe gray matter
atter (SF). The figure representations of volume loss are the same than
stic gro
al orbi
gray m
atients that limits sensitivity to detect trends. We reduced
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hese problems by abolishing explicit models for atrophy
rogression while simultaneously accounting for variations
cross subjects. To accomplish this goal we took advantage
f the fact that brain atrophy varies slowly and smoothly
ver time and used generalized additive models, a well-
stablished approximation of nonlinear functions, to predict
he course of brain atrophy changes with age. The cost we
aid is that the sensitivity to detect fast variations in brain
hange over short periods, i.e., on and off medication, is
iminished. However, this should not be a major limitation
or studies which focus on brain aging and prediction of
isease progression where long time periods matter.

The finding that cognitively normal (CN) and AD have
ifferent time courses of brain atrophy with age is not
urprising, because age is by far the most important risk
actor for sporadic AD (Chen et al., 2009) and the mecha-

able 2
elationship between brain volumes and age as well as significance of no

rain regions Control sMCI

eDF Fage eDF Fage

ateral ventricles 1.9 22.2a 2.3 45.2a

otal white matter 1.7 23.5a 2.2 40.2a

otal gray matter 1.8 45.9a 2.0 30.7a

arahippocampal gyrus 1.9 9.3c 1.6 18.7c

usiform gyrus 1.6 31.2a 1.3 17.1b

ippocampus 1.7 44.5a 2.4 37.8a

ransverse temporal GM 1.9 20.5a 2.2 9.7b

ntorhinal cortex 1.7 5.5d 1.4 18.8b

uperior temporal GM 1.9 33.6a 1.4 9.6b

osterior cingulate 1.9 31.1a 1.4 13.7a

recentral GM 1.8 60.0a 2.1 50.1a

ateral orbitofrontal GM 1.3 25.9a 1.7 82.3a

edial orbitofrontal GM 1.3 12.1b 1.6 58.2a

nferior parietal GM 1.2 48.9a 1.6 14.6b

uperior frontal GM 1.8 41.1a 1.9 22.2a

ey: AD, Alzheimer’s disease; cMCI, patients with mild cognitive impa
onlinearity where a value larger than unity indicates the deviation from lin
M, gray matter; pnonlinear, p-value of nonlinearity test; sMCI, stable mild
a p-value levels of age tests: p � 0.001.
b p-value levels of age tests: p � 0.01.
c p-value levels of age tests: p � 0.05.
d p-value levels of age tests: not significant.

able 3
ypothetical annualized rates of percent brain volume change and corresp
sing generalized additive models

egion Control sMCI cMCI

RC �1.1 � 2.8 �2.3 � 3.1 �5.0 �
P �1.0 � 1.9 �2.0 � 2.1 �3.5 �
V �4.2 � 3.6 �5.2 � 4.3 �8.2 �
G �0.8 � 2.0 �1.6 � 2.2 �3.9 �
G �1.0 � 2.3 �1.8 � 2.7 �3.6 �
T �0.9 � 1.8 �1.4 � 2.0 �3.0 �

nnualized rates listed as mean � standard deviation.
ey: AD, Alzheimer’s disease; cMCI, mild cognitive impairment patient
ippocampus; LV, lateral ventricles; PG, parahippocampal gyrus; sMCI, st

a Effect sizes computed as Cohen’s d which is defined as the difference betwee
isms of neurodegeneration in AD are thought to differ
undamentally from those in normal aging (Shagam, 2009).
owever, it is fascinating to see that a GAM analysis

aptured the leveling off of brain volume loss in certain
rain regions in CN and partly also in sMCI without a priori
odels for atrophy progression. The leveling off of brain

trophy progression cannot be explained by a floor effect of
rain volume because the rates continued to decline in
MCI and AD patients, who both have on average smaller
rain volumes than CN and sMCI subjects. One explanation
s that brain damage in aging is statistically distributed such
hat brain tissue with low vitality degenerates first. There-
fter, only tissue with high vitality remains and neurode-
eneration levels off with advanced age. This explanation is
lso consistent with modern theories of biological survival
hat show a decline in mortality rates in old age (Piantanelli,

ity using generalized additive modeling

CI AD Nonlinearity

F Fage eDF Fage Fnonlinear pnonlinear

33.5a 1.5 35.7a 7.1 8.0 � 10�3

18.7b 2.0 18.3b 5.5 9.2 � 10�3

9.1c 1.2 0.6d 5.3 1.1 � 10�2

2.4d 1.4 14.4b 14.9 3.6 � 10�5

16.8b 1.0 2.6d 14.1 7.0 � 10�4

25.6a 2.1 27.3a 12.2 4.6 � 10�4

20.7a 1.3 12.2b 9.9 1.9 � 10�3

12.9b 1.4 22.6a 9.2 1.0 � 10�2

27.0a 1.3 6.9d 4.3 d

9.4b 1.0 0.1d 5.0 d

14.6a 1.7 10.1b 5.0 d

21.7a 1.4 13.2b 4.9 d

13.6b 1.4 19.3b 4.5 d

3.2d 1.0 2.0d 1.5 d

23.7a 1.7 11.9b 0.9 d

who later converted to AD; eDF, extra degrees of freedom, an index of

age, F-value of age dependence test; Fnonlinear, F-value of nonlinearity test;
ive impairment.

effect sizes for subjects not older than 65 years based on estimations

AD Effect sizea

sMCI cMCI AD

�5.9 � 3.9 0.4 1.3 1.4
�4.0 � 2.3 0.5 1.2 1.3
�9.9 � 5.3 0.2 1.1 1.3
�4.0 � 2.9 0.3 0.9 1.3
�4.2 � 2.8 0.3 1.1 1.2
�3.4 � 2.9 0.2 0.9 1.0

later convered to AD; ERC, entorhinal cortex; FG, fusiform gyrus; HP,
ild cognitive impairment patients; ST, superior temporal lobe gray matter.
nlinear

cM

eD

1.3
1.9
1.9
1.3
1.2
1.8
2.0
1.3
1.9
1.9
1.8
1.4
1.4
1.3
1.8

irment
earity; F

cognit
onding

3.6
2.2
4.7
2.3
2.8
2.5

s who
able m
n the 2 means divided by the pooled standard deviation of the data.
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986). A decline in mortality rate with increasing age may
lso explain why older patients with late onset of sporadic
D may progress clinically slower than patients with early
isease onset. While it remains unclear which mechanism
ay lead reduced mortality rates, possible scenarios at the

ellular level include polymorphisms in mitochondrial func-
ion, oxidative stress, and protein denaturation (Drachman,
006). In contrast to aging, our findings in AD of a contin-
ation and even acceleration of brain atrophy in old age
s consistent with the concept that neurodegeneration due
o AD accumulates over years. It is also striking to see
hat the leveling off of atrophy rates in CN and MCI is
redominantly seen in medial temporal lobe structures,
ncluding the hippocampus, and less in the other brain
obes, implying that less vital brain tissue in the medial
emporal lobe is dying faster than in other brain regions
hile vital tissue survives. However, another explanation

or the leveling off of rates is that the older group of
N and sMCI subjects included fewer individuals with
symptomatic AD.

In some temporal lobe regions in controls, GM atrophy
ppeared to be limited initially but then accelerated with
ncreasing age. Whether this time course indicates a partic-
lar resistance of these brain regions to damage until late
ife is unclear. It may also be possible that the time course
f accelerated atrophy represents control subjects who have
levated brain amyloid, which is sometimes seen in controls
n positron-emission tomography (PET) amyloid imaging
nd which has been shown to correlate with high atrophy
ates (Apostolova et al., 2010; Jack et al., 2009). More
tudies are warranted to investigate the relationship of at-
ophy rates with age, especially with respect to the brain
myloid burden.

We also estimated — based on the GAM results —
hich brain regions would hypothetically provide a suffi-

iently high effect size to differentiate between patient and
ontrols not older than 65 years. We determined that atro-
hy rates of the ERC yield the best effect size to separate
oung AD patients from control subjects early, followed by
ates of hippocampal atrophy and ventricular expansion.
nterestingly, the atrophy rates of ERC also yielded the
ighest effect sizes to differentiate between young cMCI
nd control subjects, followed — in the same order as for
D — by hippocampal volume and ventricular expansion.

n practice, however, segmenting reliably the ERC, which is
small structure and located in a convoluted area of the

ortex, is not without complication and larger structures,
uch as the hippocampus and ventricles, might provide
etter precision. In general, our estimations indicate that
esial temporal lobe structures provide larger effect sizes

han other brain regions, in line with general observations
hat mesial temporal lobe atrophy is the most prominent
eature of AD seen on MRI.

The GAM method is not limited to analysis of age-

elated variations in MRI. In principle, GAM should also be i
seful to explore relationships between brain changes and
ther distributed measures, such as cognitive scores, CSF
iomarkers, and brain amyloid load.

Several limitations of this study ought to be mentioned:
irst, because this is still largely a cross-sectional study,
ecular effects across subjects may have mimicked age
ariations. A mixed effects GAM model, which is available
n R, might have relaxed the impact of secular effects by
llowing a decomposition of errors into between and within
ubject variations. However, an exact statistic for signifi-
ance tests of nonlinearity, as required in this study, has not
et been formulated for mixed effects GAM models. It is
ossible that we overestimated nonlinear relationships be-
ween brain changes and age by not considering mixed
ffects. Another limitation is that we evaluated rate varia-
ions with age separately by region without including rela-
ionship between them. This resulted likely in a loss of
ensitivity as most brain regions are more or less affected by
ge and exploiting spatial relations across regions might
ncrease power. More development is needed to incorporate
he GAM framework into image analysis. Another limita-
ion is that our investigations were limited by study design
o the last 4–5 decades of life but excluded earlier decades.

e therefore cannot rule out that some of our findings are
odulated by prior lifetime events that are unrelated to age

s well as cognitive status.
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